Sputtering Power Effects on Growth and Mechanical Properties of Cr2AlC MAX Phase Coatings

نویسندگان

  • Muhammad Naveed
  • Aleksei Obrosov
  • Andrzej Zak
  • Wlodzimierz Dudzinski
  • Alex A. Volinsky
  • Sabine Weiß
چکیده

Coating growth and mechanical properties of nanolamellar Cr2AlC coatings at various sputtering power were investigated in the present study. Cr2AlC coating was deposited on the IN 718 superalloy and (100) Si wafers by DC magnetron sputtering at different sputtering powers. The structure and properties were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nanoindentation. It was found that coatings had columnar structure with nanocrystalline substructure. Deposition rate increased with the sputtering power. XRD results showed the presence of the Cr2AlC MAX phase, intermetallic AlCr2 and Cr7C3 carbide phases, along with the change in preferential coating growth orientation. TEM observations confirmed the occurrence of these phases, and the SAED patterns demonstrated significant texture of the coatings. Hardness values were measured in the range between 11–14 GPa, showing a slight increase with the sputtering power.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A combinatorial comparison of DC and high power impulse magnetron sputtered Cr2AlC

Using a combinatorial approach, Cr, Al and C have been deposited onto sapphire wafer substrates by High Power Impulse Magnetron Sputtering (HiPIMS) and DC magnetron sputtering. X-ray photoelectron spectroscopy, X-ray absorption spectroscopy and X-ray diffraction were employed to determine the composition and microstructure of the coatings and confirm the presence of the Cr2AlC MAX phase within ...

متن کامل

Chemical and Morphological Characterization of Magnetron Sputtered at Different Bias Voltages Cr-Al-C Coatings

MAX phases (M = transition metal, A = A-group element, and X = C/N) are of special interest because they possess a unique combination of the advantages of both metals and ceramics. Most attention is attracted to the ternary carbide Cr2AlC because of its excellent high-temperature oxidation, as well as hot corrosion resistance. Despite lots of publications, up to now the influence of bias voltag...

متن کامل

Mechanical Properties and Microstructural Evolution of Ta/TaNx Double Layer Thin Films Deposited by Magnetron Sputtering

Crystalline tantalum thin films of about 500nm thickness were deposited on AISI 316L stainless steel substrate using magnetron sputtering. To investigate the nano-mechanical properties of tantalum films, deposition was performed at two temperatures (25°C and 200°C) on TaNx intermediate layer with different N2/Ar flow rate ratio from 0 to 30%. Nano-indentation was performed to obtain the mechani...

متن کامل

Enhanced of Nano-mechanical Properties of NiTi Alloy by Applied Nanostructured Tantalum Nitride Coating with Magnetron Sputtering method

    Nowadays, suitable protective properties of tantalum nitride coatings, such as hardness, abrasion resistance and high corrosion resistance lead to increasing its application in medical engineering and improving the biological behavior of titanium and its alloys. In this research, nanostructured tantalum nitride coating was applied on the NiTi alloy by magnetron sputtering method. Then, the ...

متن کامل

Influence of Power Pulse Parameters on the Microstructure and Properties of the AlCrN Coatings by a Modulated Pulsed Power Magnetron Sputtering

In this study, AlCrN coatings were deposited using modulated pulsed power magnetron sputtering (MPPMS) with different power pulse parameters by varying modulated pulsed power (MPP) charge voltages (350 to 550 V). The influence of power pulse parameters on the microstructure, mechanical properties and thermal stability of the coatings was investigated. The results indicated that all the AlCrN co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016